Lumiage

“Boost Muscle Repair and Recovery Naturally”

Muscle Injuries: Common Yet Impactful

Muscle injuries affect nearly everyone at some point, especially athletes and laborers. Some injuries can linger for months or years, reducing mobility, strength, and overall quality of life. As we age, the body’s natural repair ability declines, making muscle recovery slower and more difficult.

Satellite Cells: Muscles’ Natural Repair Units

Muscles contain satellite cells, tissue-specific stem cells that activate when injury occurs. Despite their presence, repair is often incomplete, leaving injuries partially healed. Enhancing these cells’ activity is a key to faster and more effective recovery.

Bone Marrow Stem Cells in Muscle Repair

Research shows bone marrow stem cells can migrate to damaged muscles and transform into muscle cells, aiding repair. Animal studies demonstrate that stem cells naturally travel to injured tissue, integrate, and support healing, confirming their critical role in muscle regeneration.

Endogenous Stem Cell Mobilization (ESCM) Boosts Recovery

Stimulating the release of one’s own stem cells can further enhance muscle repair. Studies using G-CSF (Granulocyte Colony-Stimulating Factor) show ESCM accelerates healing, converts stem cells into muscle cells, and activates satellite cells already in the tissue. The result is improved repair and increased muscle strength.

Natural compounds like Aphanizomenon flos-aquae (AFA) have also shown promise in boosting stem cell activity, helping muscles regenerate after severe damage.

Potential for Degenerative Muscle Diseases

Stem cell therapies have demonstrated potential for conditions like muscular dystrophy and ALS. Stem cells injected into the bloodstream or directly into muscles have improved muscle function and regeneration in both animal and human studies.

Athletic Performance and Stem Cells

Intense exercise naturally triggers the release of stem cells, helping repair microscopic muscle damage. Supporting this process with natural herbal stem cell enhancers could improve recovery and maintain muscle strength in athletes over time. Empirical reports suggest enhanced endurance, faster recovery, and stronger muscles with consistent use.

Sources:

  1. The skeletal muscle satellite cell: still young and fascinating at 50.
    Yablonka-Reuveni Z. J Histochem Cytochem. 2011.
  2. Stem cell activation in skeletal muscle regeneration.
    Fu X, Wang H, Hu P.Cell Mol Life Sci. 2015 May;72(9):1663-77.
  3. Muscle regeneration by bone marrow-derived myogenic progenitors.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F.Science. 1998 Mar 6;279(5356):1528-30.
  4. Skeletal muscle differentiation potential of human adult bone marrow cells.
    Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A, Deliliers GL, Pietro Comi G, Soligo D.Exp Cell Res. 2004 Apr 15;295(1):66-78.
  5. Robust conversion of marrow cells to skeletal muscle with formation of marrow-derived muscle cell colonies: a multifactorial process.
    Abedi M, Greer DA, Colvin GA, Demers DA, Dooner MS, Harpel JA, Weier HU, Lambert JF, Quesenberry PJ.Exp Hematol. 2004 May;32(5):426-34.
  6. Induction of bone marrow-derived cells myogenic identity by their interactions with the satellite cell niche.
    Kowalski K, Dos Santos M, Maire P, Ciemerych MA, Brzoska E.Stem Cell Res Ther. 2018 Sep 27;9(1):258.
  7. Skeletal muscle differentiation potential of human adult bone marrow cells.
    Bossolasco P, Corti S, Strazzer S, Borsotti C, Del Bo R, Fortunato F, Salani S, Quirici N, Bertolini F, Gobbi A, Deliliers GL, Pietro Comi G, Soligo D.Exp Cell Res. 2004 Apr 15;295(1):66-78.
  8. Muscle regeneration by bone marrow-derived myogenic progenitors.
    Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F.Science. 1998 Mar 6;279(5356):1528-30.
  9. Administration of granulocyte colony-stimulating factor facilitates the regenerative process of injured mice skeletal muscle via the activation of Akt/GSK3alphabeta signals.
    Naito T, Goto K, Morioka S, Matsuba Y, Akema T, Sugiura T, Ohira Y, Beppu M, Yoshioka T.Eur J Appl Physiol. 2009 Mar;105(4):643-51.
  10. Granulocyte-colony stimulating factor enhances muscle proliferation and strength following skeletal muscle injury in rats.
    Stratos I, Rotter R, Eipel C, Mittlmeier T, Vollmar B.J Appl Physiol (1985). 2007 Nov;103(5):1857-63.
  11. Mobilization of bone marrow stem cells with StemEnhance improves muscle regeneration in cardiotoxin-induced muscle injury.
    Drapeau C, Antarr D, Ma H, Yang Z, Tang L, Hoffman RM, Schaeffer DJ.Cell Cycle. 2010 May;9(9):1819-23.
  12. Early transplantation of human immature dental pulp stem cells from baby teeth to golden retriever muscular dystrophy (GRMD) dogs: Local or systemic?
    Kerkis I, Ambrosio CE, Kerkis A, Martins DS, Zucconi E, Fonseca SA, Cabral RM, Maranduba CM, Gaiad TP, Morini AC, Vieira NM, Brolio MP, Sant’Anna OA, Miglino MA, Zatz M.J Transl Med. 2008 Jul 3;6:35.
  13. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice.
    Torrente Y, Tremblay JP, Pisati F, Belicchi M, Rossi B, Sironi M, Fortunato F, El Fahime M, D’Angelo MG, Caron NJ, Constantin G, Paulin D, Scarlato G, Bresolin N.J Cell Biol. 2001 Jan 22;152(2):335-48.
  14. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model.
    Torrente Y, Camirand G, Pisati F, Belicchi M, Rossi B, Colombo F, El Fahime M, Caron NJ, Issekutz AC, Constantin G, Tremblay JP, Bresolin N.J Cell Biol. 2003 Aug 4;162(3):511-20.
  15. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients.
    Torrente Y, Belicchi M, Marchesi C, D’Antona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D’Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N.Cell Transplant. 2007;16(6):563-77.
  16. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy.
    Hayashiji N, Yuasa S, Miyagoe-Suzuki Y, Hara M, Ito N, Hashimoto H, Kusumoto D, Seki T, Tohyama S, Kodaira M, Kunitomi A, Kashimura S, Takei M, Saito Y, Okata S, Egashira T, Endo J, Sasaoka T, Takeda S, Fukuda K.Nat Commun. 2015 Apr 13;6:6745.
  17. Granulocyte Colony-Stimulating Factor Ameliorates Skeletal Muscle Dysfunction in Amyotrophic Lateral Sclerosis Mice and Improves Proliferation of SOD1-G93A Myoblasts in vitro.
    Rando A, Gasco S, de la Torre M, García-Redondo A, Zaragoza P, Toivonen JM, Osta R.Neurodegener Dis. 2017;17(1):1-13.
  18. Circulating hematopoietic progenitor cells in runners.
    Bonsignore MR, Morici G, Santoro A, Pagano M, Cascio L, Bonanno A, Abate P, Mirabella F, Profita M, Insalaco G, Gioia M, Vignola AM, Majolino I, Testa U, Hogg JC.J Appl Physiol (1985). 2002 Nov;93(5):1691-7.
  19. The effect of brief exercise on circulating CD34+ stem cells in early and late pubertal boys.
    Zaldivar F, Eliakim A, Radom-Aizik S, Leu SY, Cooper DM.Pediatr Res. 2007 Apr;61(4):491-5.
  20. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training.
    Thijssen DH, Vos JB, Verseyden C, van Zonneveld AJ, Smits P, Sweep FC, Hopman MT, de Boer HC.Aging Cell. 2006 Dec;5(6):495-503.
  21. Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage.
    Krüger K, Pilat C, Schild M, Lindner N, Frech T, Muders K, Mooren FC.Scand J Med Sci Sports. 2015 Jun;25(3):e283-91.
  22. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile.
    Van Craenenbroeck EM, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VF, Hoymans VY, Conraads VM.J Appl Physiol (1985). 2008 Apr;104(4):1006-13.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top